KU LEUVEN

Ghent Technology Campus

TC 281 – CCC Interlaboratory test on carbonation testing methods

Organizing committee:

Elke Gruyaert, Barbara Lothenbach, Fabrizio Moro, Charlotte Thiel, Philip Van den Heede, Anya Vollpracht, Stefanie von-Greve Dierfeld

Presentation prepared by Hanne Vanoutrive and Elke Gruyaert

Introduction

WG 2

Correlation between atmospheric carbonation and carbonation induced by accelerated testing at high CO₂ concentrations

Effect of SCMs on natural and accelerated carbonation of blended Portland cements

- The higher susceptibility of SCM binders to carbonation is usually concluded from accelerated tests
 - **High CO₂ levels**: 1% to 100% \leftrightarrow in situ
 - **Fixed relative humidity** (RH) ↔ varying meteorological conditions in reality
 - Fixed temperature ↔ varying meteorological conditions in reality
- Different standards differ with regard to the conditions and time of curing and preconditioning → SCMs: reaction processes are delayed and curing/pre-conditioning times and circumstances can thus have a significant impact on the test results.
- Given the fact that the external parameters do change the carbonation process and carbonation products, there is a **need for representative accelerated tests**.

WG 1

Compare different national and European standards for carbonation testing of mortar / concrete with different types of cement CEM I, CEM II/B-V and CEM III/B.

Learn more about the following effects on carbonation resistance:

- the effect of curing and pre-conditioning (temperature, relative humidity and duration)
- the effect of accelerated testing (natural vs. increased CO₂ concentration)
- the effects of coarse aggregates in the mix (mortar vs. concrete)

The interlaboratory test will furthermore:

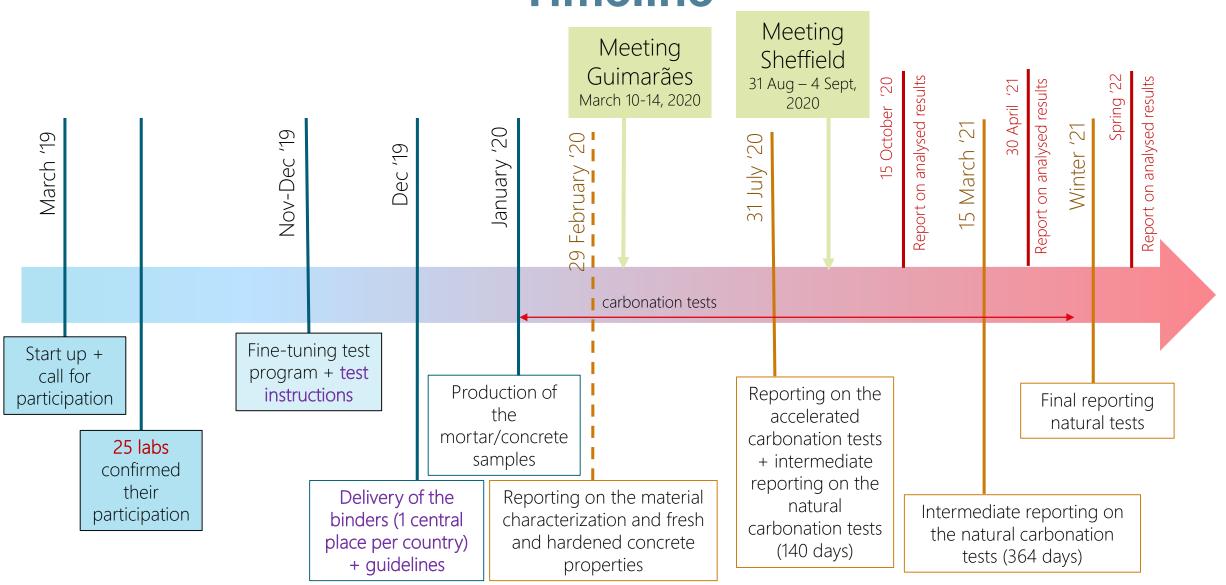
- compare ranking of concrete types following different carbonation standards
- learn more about the uncertainty of results, via the determination of the standard deviations of repeatability and reproducibility.

Test specimen

- Mortar (mandatory)
- Concrete

Binder types

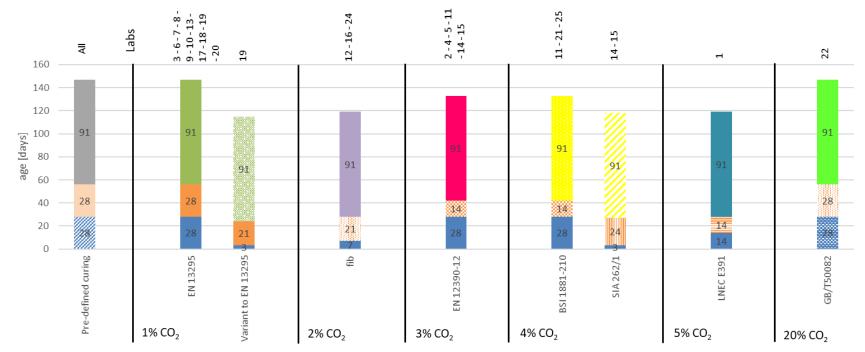
- CEM I 42.5 N (mandatory)
- CEM II/B-V 42.5 N
- CEM III/B 42.5 N


Curing and preconditionning

- Reference specimens (mandatory): only for accelerated carbonation tests on mortar and/or concrete
 - Pre-defined curing = 28 days sealed curing at 20°C
 - Preconditioning according to the standard your lab is following
- Test specimens
 - Curing and preconditioning according to the standard your lab is following

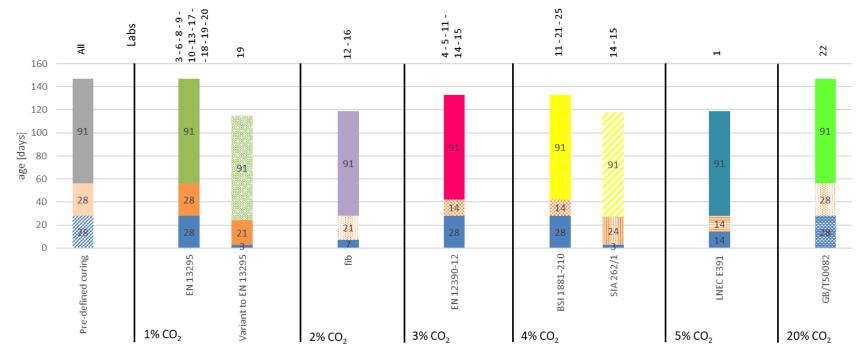
Carbonation

- Accelerated carbonation (according to the standard your lab is following) (mandatory)
- Natural carbonation (Indoor in climate chamber or (un)sheltered outdoor)

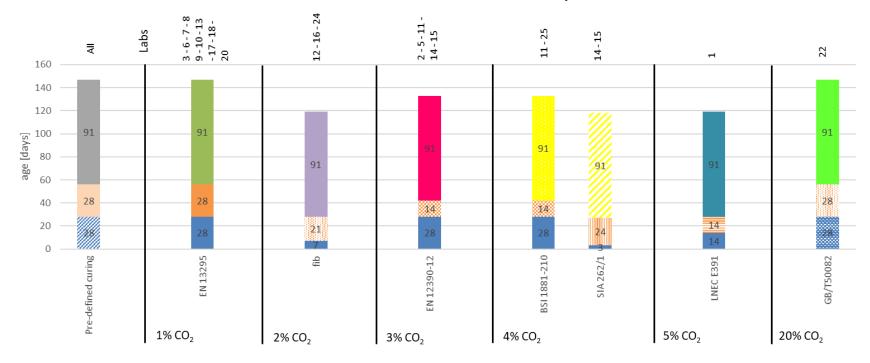

Timeline

Participants

	Institution	Contact person
РТ	1 - University of Minho	Aires Camoes
ES	2 - University of Extremadura in collaboration with Instituto Eduardo Torroja (CSIC)	César Medina Martinez; Javier Sanchez Montero; Nuria Rebolledo
ES	3 - Instituto Eduardo Torroja (CSIC)	Angel Palomo; María Inés García Lodeiro
ES	4 - Universitat Politecnica de Catalunya (UPC)	Miren Etxeberria
ES	5 - Universidad Politecnica de Madrid	Amparo Moragues; Carmen Andrade
BE	6 - KU Leuven – Technology Campus Ghent	Hanne Vanoutrive; Elke Gruyaert
BE	7 - Belgian Nuclear Research Center – SCK-CEN	Quoc Tri Phung
BE	8 - Magnel Laboratory for Concrete Research, Ghent University	Philip Van den Heede; Natalia Alderete; Nele De Belie; Zhiyuan Liu
BE	9 - University of Liege	Zengfeng Zhao
BE	10 - KU Leuven	Özlem Cizer
NL	11 - TU Delft	Bei Wu
DE	12 - TU Munich	Charlotte Thiel
DE	13 - RWTH Aachen University	Anya Vollpracht
СН	14 – Empa	Barbara Lothenbach
СН	15 - TFB AG	Stefanie von Greve-Dierfeld
AT	16 - Graz University of Technology	Cyrill Grengg; Marlene Sakoparnig
SI	17 - Slovenian National Building and Civil Engineering Institute – ZAG	Vilma Ducman
RS	18 - University of Belgrade	Ivan Ignjatovic
GR	19 - Democritus University of Thrace	Kosmas Sideris
UK	20 - University of Hertfordshire	Antonis Kanellopoulos
IN	21 - Bennett University	Talakokula Visalakshi
CN	22 - Hunan University	Tung Chai Ling
NG	23 - University of Lagos	Kolawole Olonade
US	24 - CTL group Illinois	José Pacheco
UK	25 - University of Leeds	Susan Bernal; Alastair Marsh

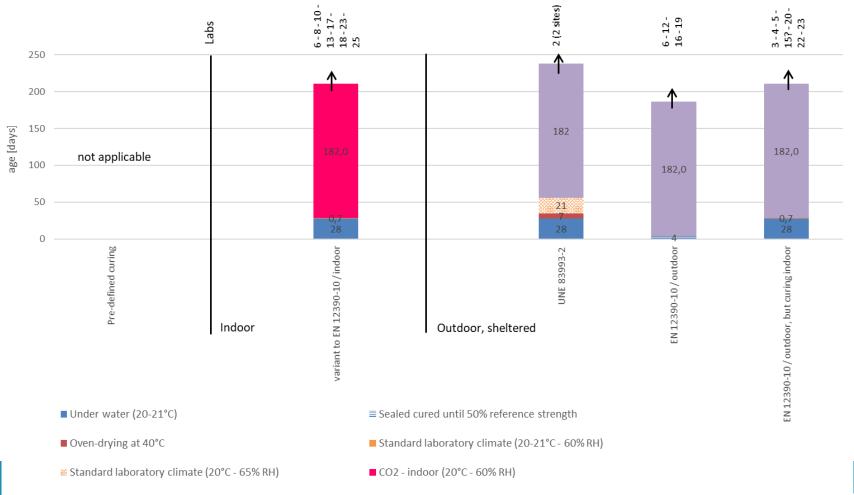

MORTAR - ACCELERATED TEST - CEM I

Under water (20-21°C)	∅ Sealed curing (20°C)	⅔ Wet curing (20°C - > 90% RH)	
Conditions as in carbonation chamber	Standard laboratory climate (20-21°C - 60% RH)	🛚 Standard laboratory climate (20°C - 65% RH)	
≡ Standard laboratory climate (20°C - 50% RH)	∝ Standard laboratory climate (18-25°C - 50-65% RH)	IIII Standard laboratory climate (20°C - 57% RH)	
■ 1 vol% CO2 (20 or 21°C - 60% RH)	₩ 1 vol% CO2 (20-22°C - 50-55% RH)	■ 2 vol% CO2 (20°C - 65% RH)	
■ 3 vol% CO2 (20°C - 57% RH)	≅ 4 vol% CO2 (20°C - 55% RH)	4 vol% CO2 (20°C - 57% RH)	
■ 5 vol% CO2 (23°C - 55% RH)	■ 20 vol% CO2 (20°C - 70% RH)	CO2, temp. and RH chosen by each participant	ogy Campu

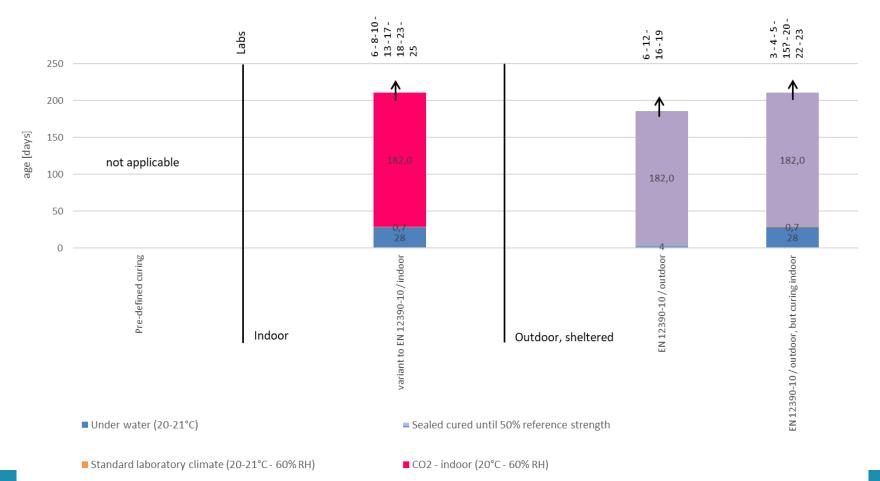

us KU LEUVEN

MORTAR - ACCELERATED TEST - CEM II/B-V

Under water (20-21°C)	⊗ Sealed curing (20°C)	≌ Wet curing (20°C - > 90% RH)		
Conditions as in carbonation chamber	Standard laboratory climate (20-21°C - 60% RH)	Standard laboratory climate (20°C - 65% RH)		
≡ Standard laboratory climate (20°C - 50% RH)	[⊗] Standard laboratory climate (18-25°C - 50-65% RH)	IIII Standard laboratory climate (20°C - 57% RH)		
■ 1 vol% CO2 (20 or 21°C - 60% RH)	🛿 1 vol% CO2 (20-22°C - 50-55% RH)	■ 2 vol% CO2 (20°C - 65% RH)		
■ 3 vol% CO2 (20°C - 57% RH)	► 4 vol% CO2 (20°C - 55% RH)	✓ 4 vol% CO2 (20°C - 57% RH)		
■ 5 vol% CO2 (23°C - 55% RH)	20 vol% CO2 (20°C - 70% RH)	CO2, temp. and RH chosen by each participant	ogy Campus	KU LEUVEN

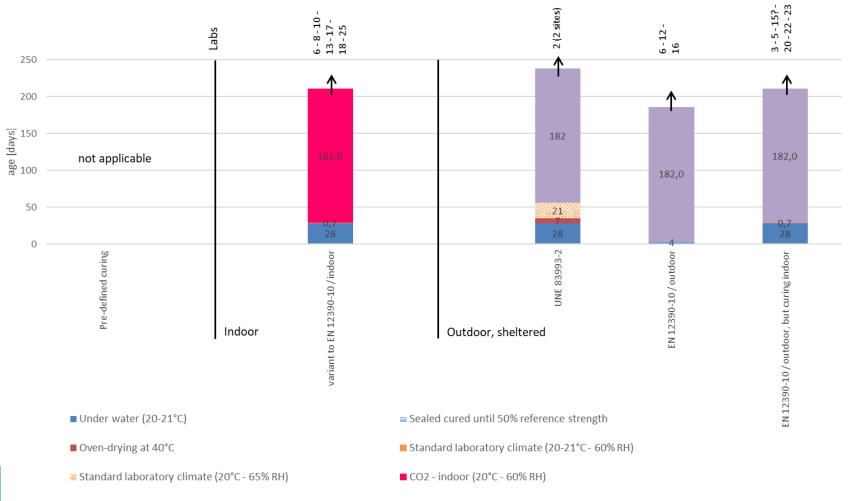

MORTAR - ACCELERATED TEST - CEM III/B

■ Under water (20-21°C)	Ø Sealed curing (20°C)	₩ Wet curing (20°C - > 90% RH)	_
Conditions as in carbonation chamber	Standard laboratory climate (20-21°C - 60% RH)	🛚 Standard laboratory climate (20°C - 65% RH)	
≡ Standard laboratory climate (20°C - 50% RH)	Standard laboratory climate (18-25°C - 50-65% RH)	🎟 Standard laboratory climate (20°C - 57% RH)	_
■ 1 vol% CO2 (20 or 21°C - 60% RH)	■ 2 vol% CO2 (20°C - 65% RH)	■ 3 vol% CO2 (20°C - 57% RH)	
□ 4 vol% CO2 (20°C - 55% RH)	4 vol% CO2 (20°C - 57% RH)	■ 5 vol% CO2 (23°C - 55% RH)	
20 vol% CO2 (20°C - 70% RH)	■ CO2, temp. and RH chosen by each participant		ogy

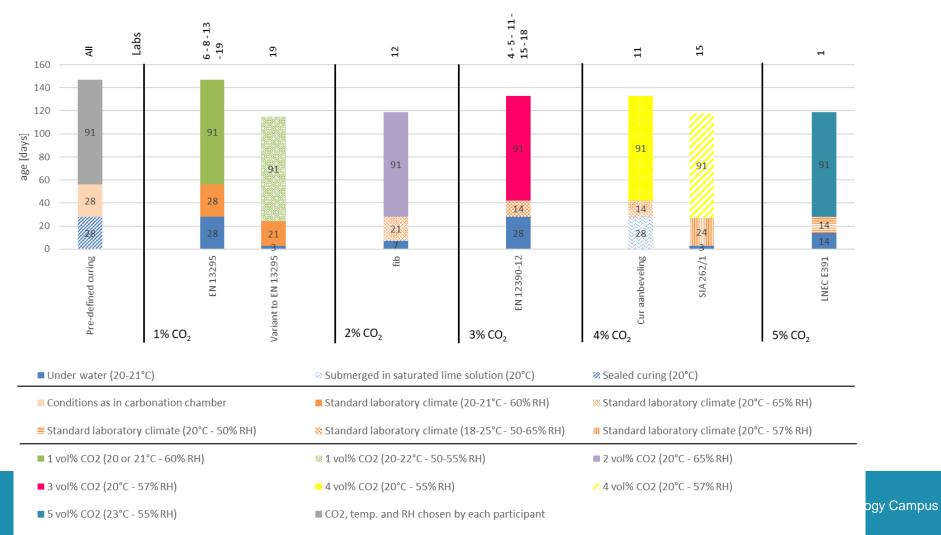


MORTAR - NATURAL TEST - CEM I

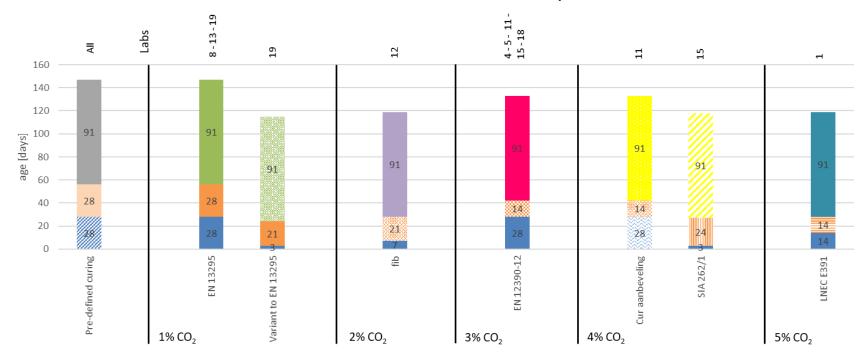
CO2 - outdoor sheltered


MORTAR - NATURAL TEST - CEM II/B-V

CO2 - outdoor sheltered

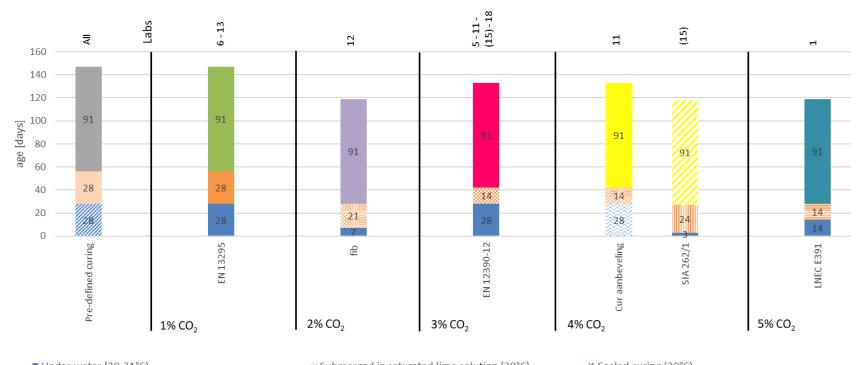

ogy Campus KU LEUVEN

MORTAR - NATURAL TEST - CEM III/B



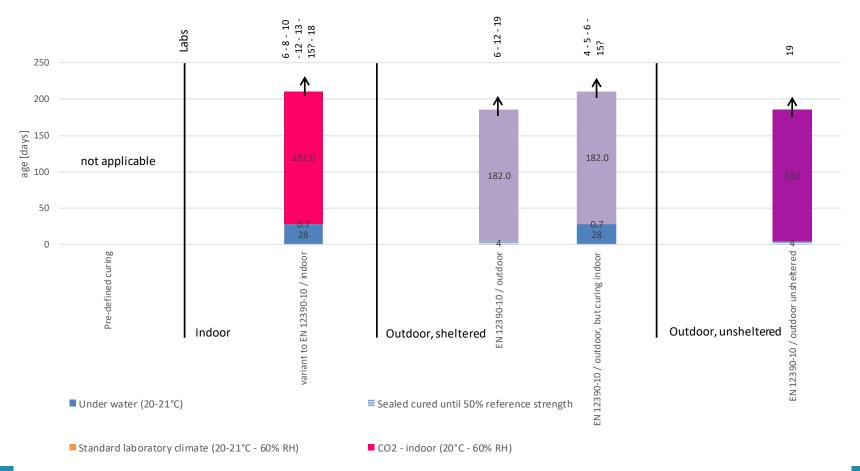
CO2 - outdoor sheltered

CONCRETE - ACCELERATED TEST - CEM I

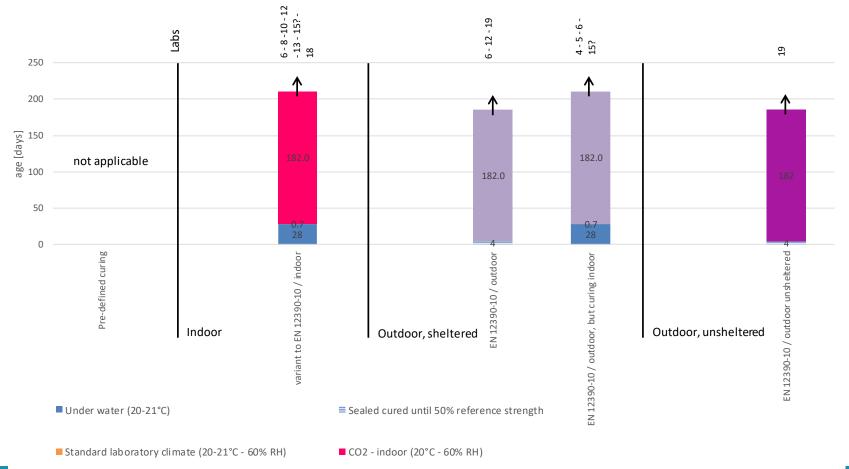

CONCRETE - ACCELERATED TEST - CEM II/B-V

■ Under water (20-21°C)	Submerged in saturated lime solution (20°C)	Sealed curing (20°C)
Conditions as in carbonation chamber	Standard laboratory climate (20-21°C - 60% RH)	🗱 Standard laboratory climate (20°C - 65% RH)
≡ Standard laboratory climate (20°C - 50% RH)	⊗ Standard laboratory climate (18-25°C - 50-65% RH)	III Standard laboratory climate (20°C - 57% RH)
■ 1 vol% CO2 (20 or 21°C - 60% RH)	≋ 1 vol% CO2 (20-22°C - 50-55% RH)	■ 2 vol% CO2 (20°C - 65% RH)
■ 3 vol% CO2 (20°C - 57% RH)	≌ 4 vol% CO2 (20°C - 55% RH)	≥ 4 vol% CO2 (20°C - 57% RH)
■ 5 vol% CO2 (23°C - 55% RH)	■ CO2, temp. and RH chosen by each participant	

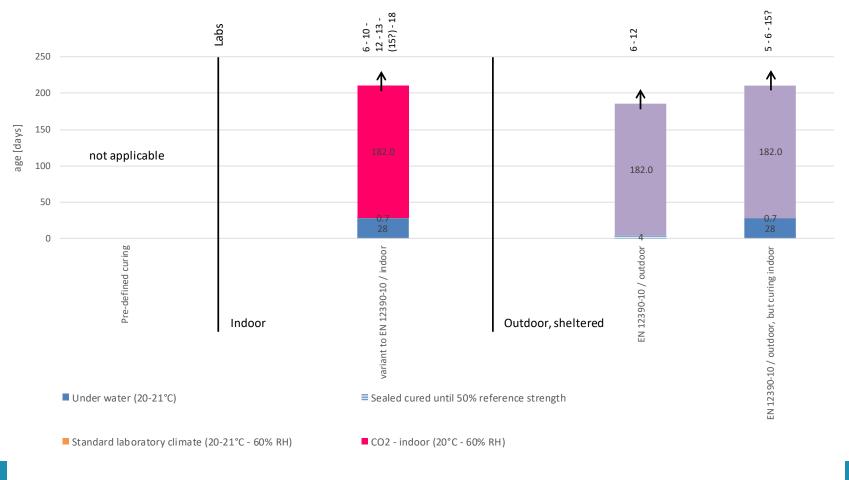
KU LEUVEN


CONCRETE - ACCELERATED TEST - CEM III/B

Under water (20-21°C)	Submerged in saturated lime solution (20°C)	Sealed curing (20°C)	
Conditions as in carbonation chamber	Standard laboratory climate (20-21°C - 60% RH)	Standard laboratory climate (20°C - 65% RH)	
≡ Standard laboratory climate (20°C - 50% RH)	⊗ Standard laboratory climate (18-25°C - 50-65% RH)	IIII Standard laboratory climate (20°C - 57% RH)	
■ 1 vol% CO2 (20 or 21°C - 60% RH)	■ 2 vol% CO2 (20°C - 65% RH)	■ 3 vol% CO2 (20°C - 57% RH)	
≅ 4 vol% CO2 (20°C - 55% RH)	✓ 4 vol% CO2 (20°C - 57% RH)	■ 5 vol% CO2 (23°C - 55% RH)	
			bay C


■ CO2, temp. and RH chosen by each participant

CONCRETE - NATURAL TEST - CEM I


CO2 - unsheltered outdoor

CONCRETE - NATURAL TEST - CEM II/B-V

CO2 - unsheltered outdoor

CONCRETE - NATURAL TEST - CEM III/B

CO2 - unsheltered outdoor

Current situation

- Binders were sent to the different European institutions by December 2019
 India, China, US, Nigeria use a local equivalent cement
- Binders were analysed by the manufacturer
- Instructions were made and sent to the different institutions by January 2020
- Worksheet was made and sent to the different institutions by January 2020
- First results of fresh and hardened properties of mortar and concrete are available

Results received of 16 institutes Results available very soon of 8 institutes

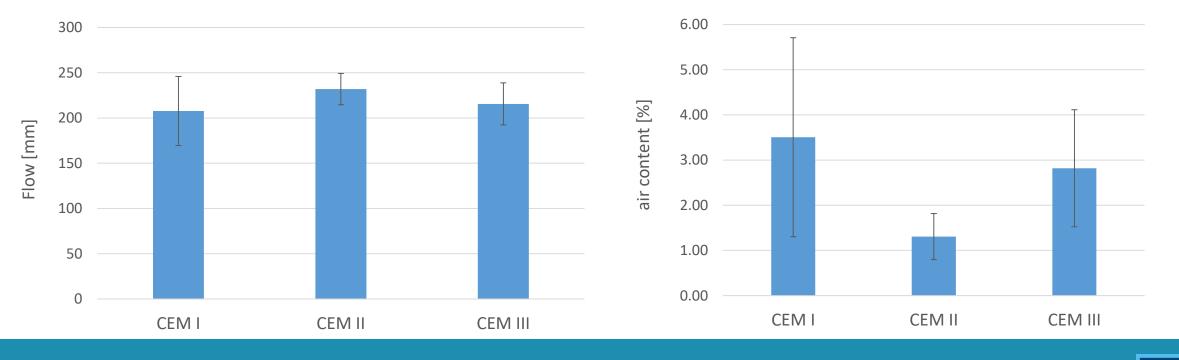
Analysis binders -

	CEM I 42.5 N	CEMII/B-V 42.5 N	CEM III/B 42.5 N
CaO	63.12	49.28	46.21
SiO ₂	20.32	28.26	30.67
Al ₂ O ₃	4.604	8.953	9.086
Fe ₂ O ₃	3.299	4.32	1.165
MgO	1.923	1.896	5.545
K ₂ O	0.612	0.906	0.698
Na ₂ O	0.264	0.368	0.203
TiO ₂	0.439	0.561	0.8
MnO	0.07	0.065	0.127
P ₂ O ₅	0.348	0.427	0.048
SO ₃	3.196	2.638	4.93
Loss on ignition [%]	1.69	1.86	(+0.74)
Blaine fineness [cm ² /g]	2640	4130	4840
Density [g/cm ³]	3.16	2.89	2.97
Strength 1d [MPa]	9.9	12.6	5.2
Strength 2d [MPa]	21.5	24.8	13.9
Strength 7d [MPa]	38.7	40.5	35.8
Strength 28d [MPa]	52.5	52.8	55.2

XRD analysis and PSD also available

Mortar composition -

- Mortars made according to EN 196-1
- Exception: W/B ratio = 0.55

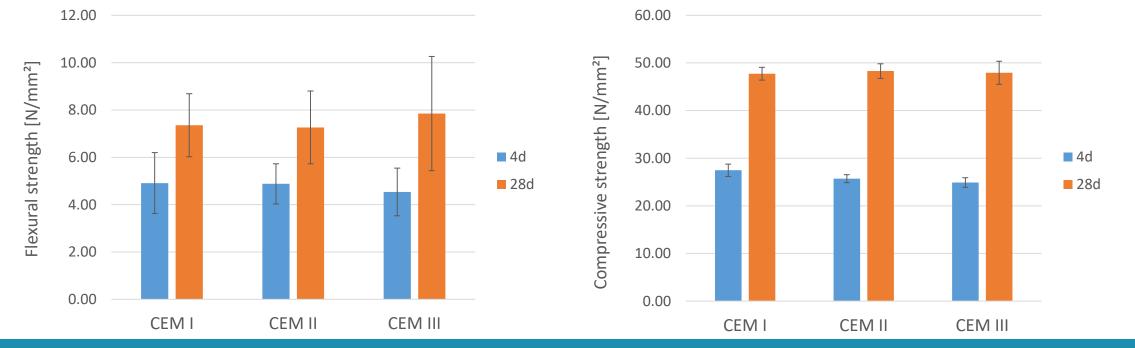

Component	Mass
cement	450 ± 2 g
water	247.5 ± 1 g
CEN standard sand	1350 ± 5 g

Results mortar

- To be reported
 - Consistence (flow table)
 - Air content
 - Flexural strength (4 days only for outdoor carbonation and 28 days)
 - Compressive strength (4 days only for outdoor carbonation and 28 days)

14 labs included

2 labs with other cements are not included in the results

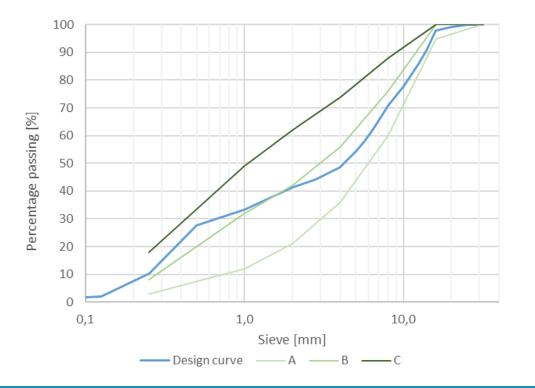


Results mortar

- To be reported
 - Consistence (flow table)
 - Air content
 - Flexural strength (4 days only for outdoor carbonation and 28 days)
 - Compressive strength (4 days only for outdoor carbonation and 28 days)

14 labs included

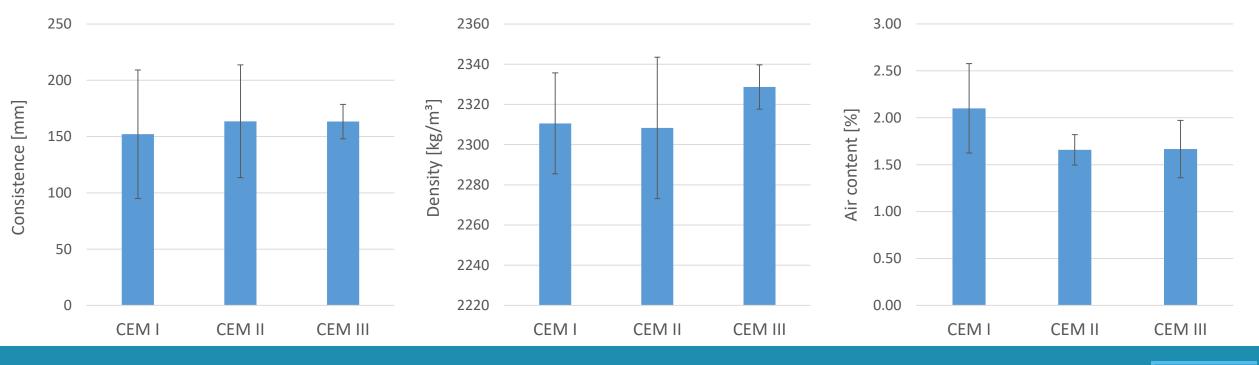
2 labs with other cements are not included in the results


Concrete composition

- The concrete mix design consists of:
 - Binder content: 340 kg/m³
 - W/B-ratio: 0.55
 - Target consistence:
 - Inert structure:

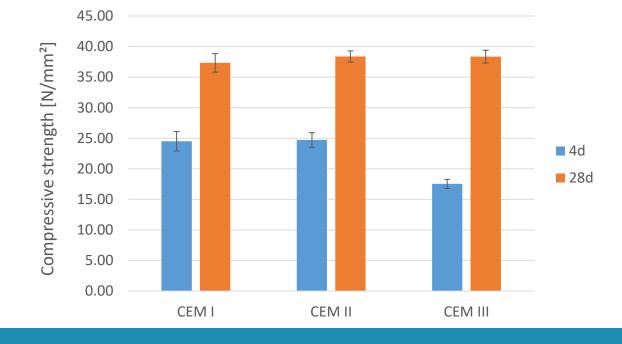
round shaped siliceous aggregates with a maximum grain size of 16 mm

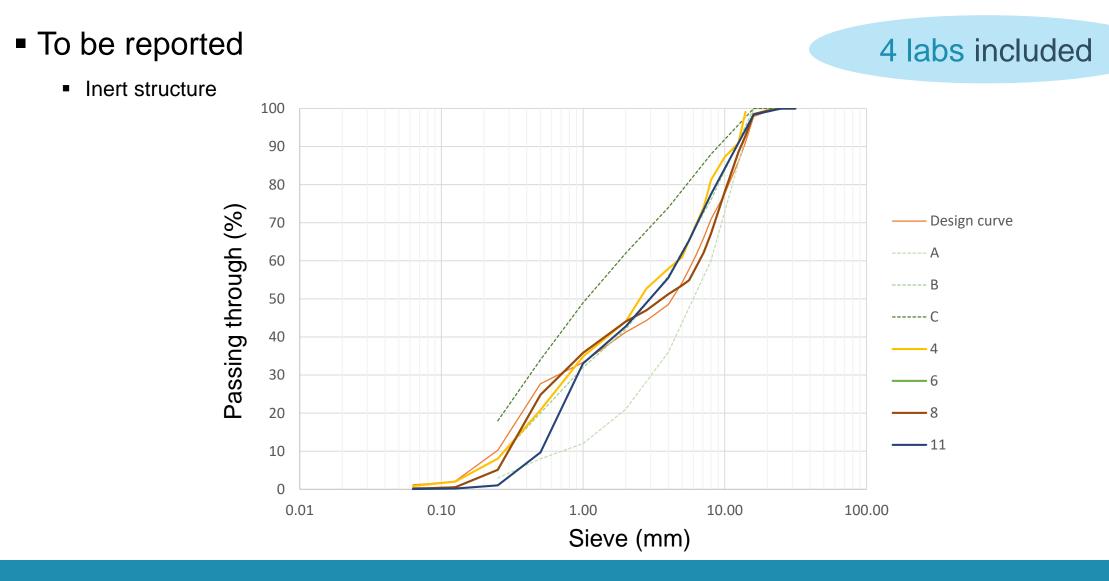
S3


Target grading curve:

Results concrete

- To be reported
 - Consistence (slump test)
 - Density of fresh concrete
 - Air content of fresh concrete
 - Compressive strength (4 days only for outdoor carbonation and 28 days)


4 labs included


Results concrete

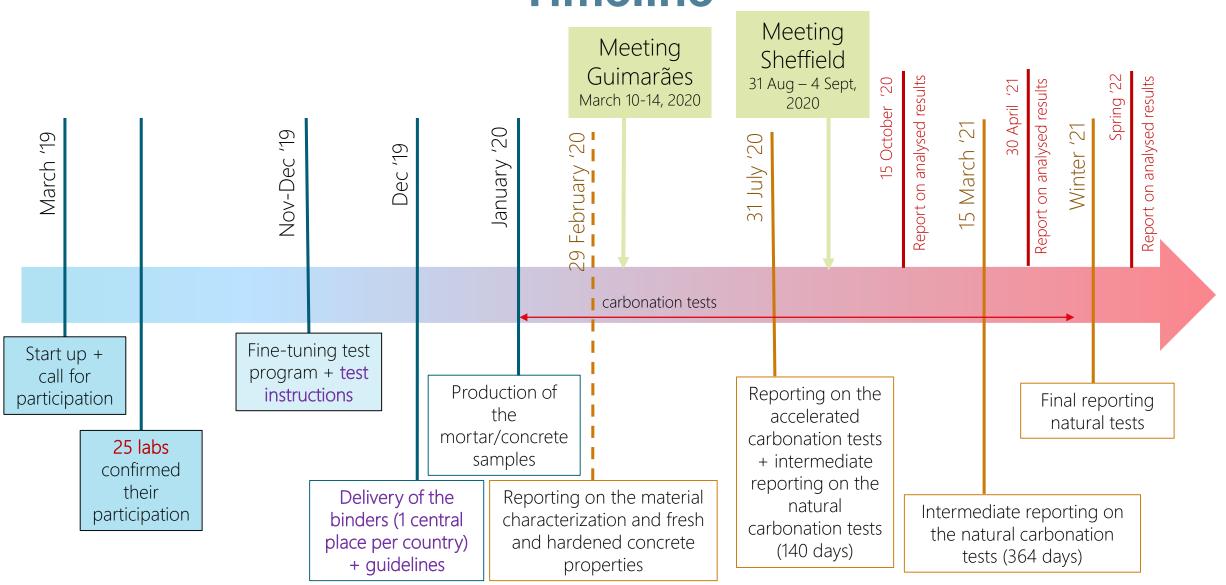
- To be reported
 - Consistence (slump test)
 - Density of fresh concrete
 - Air content of fresh concrete
 - Compressive strength (4 days only for outdoor carbonation and 28 days)

4 labs included

Results concrete

Check test procedures and fill in the Excel (Test proc._mortar and concrete): as stated in the standard – not the real conditions

Attention


- Check and fill in the Excel *temperature*, *relative humidity and* CO₂ monitoring
- Please report on
 - Test procedures
 - Fresh and hardened properties
 - Temperature, relative humidity and CO₂ monitoring

when all hardened properties are available and at the latest by the end of May

- Please report on
 - Accelerated carbonation tests
 - Natural carbonation tests (140 days)

at the latest by the end of July

Timeline

THANK YOU

- To Maciej Zajac of Heidelberg Cement for providing us with the cements and shipping them to the participants
- To all **ILT participants** for your commitment and providing us in time the first results
- To **Hanne** for analysing the first results
- To **all of you** for participating in this ILT discussion